
Solution of the Theoretical Problem of the 5th IJSO

Problem I I-1. F/m^2 $kg/(ms^2)$ I-2. 13.6 ? 76.0 cm = 1033.6 cm = 10.336 m Or 10.3 m I-3.1 atm = 13.6 ? 10^3 kg/m^3 ? 0.76 m ? 9.80 m/ s^2 = 1.013 ? $10^5 \text{ kg/m}^2 s^2$ = 1.013 ? 10⁵ Pa Or 1.01 ? $10^5 \text{ kg/ms}^2 = 1.01$? 10^5 Pa I-4. When the blood pressure is 120 mmHg (systolic pressure), the blood can go up to 10.3 m/760 mmHg? 120 mmHg = 162.6 cm162.6 cm ? g = 42 cm ? $g_{eff} => g_{eff}$? 3.87 g $g_{eff} = g + a$. Therefore $a = 2.87 g = 28.1 m/s^2$ I-5. By the continuity equation $A_1 v_1 = A_2 v_2$, Area of the aorta is $A_1 = pr_{aorta}^2$, and total cross-sectional area of the arteries are $A_2 = 32 pr_{artery}^2$. $v_2 = v_1$? $A_1/A_2 = 0.25 \text{ m/s}$? $(p(0.012 \text{ m})^2)/(32p(0.002 \text{ m})^2) = 0.28 \text{ m/s}$ The volume flow rate ?V/? t must stay the same, r_1^4 ? $P_1 = r_2^4$? P_2 . I-6. ? $P_2/?$ $P_1 = r_1^4/r_2^4 = 1/(0.9)^4$? 1.52. Therefore the blood pressure increases 52%. I-7(A) - 4, (B) - 1, (C) - 2, (D) - 3, (E) - 5I-8, 0 V 80 ? $R_x = 120$? 60 , $R_x = 90$ I-9 0V I-10.

By the Kirchhoff's rule, $I = I_1 + I_2 = I_4 + I_5$, $I_1 = I_3 + I_4$, $I_5 = I_2 + I_3$ $12 I_2 + 9 I_5 = -e$, $3 I_1 + 6 I_4 = -e$, $3 I_1 - 12 I_2 = 0$, $9 I_5 - 6 I_4 = 0$ $I_3 = -0.2 A$ $I_2 = -0.2 A$, $I_1 = -0.8 A$, $I_4 = -0.6 A$, $I_5 = -0.4 A$ e = -6 V

I-12.

Total resistance is 6.3 $\mathbf{0}$, and the total current is 6/6.3 A? 0.953 A

The current through 3 0 is 2/3 A \cong 0.667 A, and the current through 12 0 is 2/7 A ? 0.286 A

The potential drop by 3 0 is 2 V, and the potential drop by 12 0 is 24/7 V ? 3.43 V

The potential difference is 1.43 V, and A is higher than B.

Problem II

II-1. Total energy required to travel 100 km = $13.0L \times 0.70$ kg/L × 44000 kJ/kg = 400000 kJ Amount (L) of liquid propane needed to travel the same distance (100 km) = 400000 kJ / 46000 (kJ/kg) / 0.50(kg/L) = 17 L

? distance that can travel with 1 L of liquid propane = 100/17 = 5.9 km/L

II-2. Number of moles for methane in 1 mL of $LNG = 1 \times 0.42 \times 1000/16 = 26$ mmol Assuming the ideal gas, V = nRT/p $V = 26 \times 0.082 \times 298/1.0 = 640$ mL

II-3. Assuming the ideal gas, the density of the gas $\rho = \frac{W}{V} = \frac{PM}{RT}$, where M is molar mass.

Average molar mass of the LPG mixture = $0.6 \times 44 + 0.4 \times 58 = 49.6$ g/mol

At 25 ? and 1 atm, the density of the LPG mixture

$$= \frac{1 \times 49.6}{0.082 \times 298} = 2.0 \text{ g/L} = 2.0 \text{ kg/m}^3$$

II-4. $C_8H_{18}(l) + 25/2 O_2(g)$? 8 $CO_2(g) + 9 H_2O(g)$

or

 $2 C_8 H_{18}(l) + 25 O_2(g)$? 16 CO₂(g) + 18 H₂O(g)

II-5. For each fuel, compare the amount of CO₂ produced when 1 kJ of energy is obtained.

Since all C's are converted into CO_2 in the combustion reaction of fuels, the number of moles of CO_2 produced with 1 mole of fuel is equal to the number of C atoms in a single fuel molecule:

1 mole of octane(C₈H₁₈) ? 8 mole of CO₂ produced 1 mole of methane(CH₄) ? 1 mole of CO₂ produced

Combustion of 1 mole of octane:

energy produced = $44000 \times 114/1000 = 5016$ kJ

mass $CO_2 = 8 \times 44 = 352$ g g $CO_2/kJ = 352/5016 = 0.070$ g/kJ

Combustion of 1 mole of methane: energy produced = $54000 \times 16/1000 = 864$ kJ mass CO₂ = 1 × 44 = 44 g g CO₂/kJ = 44/864 = 0.051 g/kJ

II-6. Combustion energy of 1 L of gasoline = $1 \times 0.70 \times 44000 = 30800$ kJ Energy that the solar cell with the area of 1 m² can produce for 1 hour = $1KW \times 3600s \times 0.2 = 720$ kJ Area needed for the solar cell = 30800/720 = 43 m²

Problem III

III-1) Yes

Critical night length is given by interrupting a long night length, which results in two short night.

III-2) No

The length of light is not critical for flowering.

III-3) Yes

Since critical night length is given for flowering, interruption of light length doesn't matter.

III-4) No

Effect of red light is cancelled by a flash of far-red light. $P_{\rm fr}$ isoform, which was converted by red light, is going back to $P_{\rm r}$ isoform by far-red light.

III-5) Yes

R-F-R is identical condition as R alone. Thus, a flash of red light interrupting a long night can make a critical short night length to fulfill flowering condition for long-day plant.

III-6) $P_{\rm fr}$

Since sun light is rich in red light that can convert P_r isoform to P_{fr} isoform, P_{fr} isoform becomes dominant.

III-7) P_r Continuous darkness is the condition for conversion of P_{fr} isoform to P_r isoform.

III-8) Yes

The signaling molecules, which are transported to the grafted bud meristems, are able to cue the buds to develop as flower.

III-9) No

The light condition given here is not for the short-day plant to flower and then signaling molecules is absent.

III-10) No

The signaling molecules are too big to pass through the coverglass so that they are not present to cue flowering in the bud meristem area.