

December 2-11, 2010

PHYSICS EXPERIMENTAL MARKING SCHEME

Table 1: Table of values

Distance marks on the tube (cm)	Distance travelled (cm)		Time (s)	
		t ₁	t ₂	t
20		0.00	0.00	0.00
40	20			1.36
50	30			2.00
60	40			2.74
70	50			3.41
80	60			4.12
90	70		Ago H	4.78
100	80			5.44
110	90			6.14

(3.2 marks)

December 2-11, 2010

3.5.1

Plot the graph of distance travelled against time.

(1.6 marks)

(Use the graph sheet provided)

3.5.2 Determine the slope of the graph in question 3.5.1

(1.2 marks)

Slope = 14.66 cms⁻¹ = 0.1466 ms⁻¹

December 2-11, 2010

3.5.3 Identify the physical meaning of each of the three (3) terms in equation (1) labelled A, B, and C in Table 2 using Table 3 which gives the likely names of the terms (i. e, match Table 2 and Table 3 using the appropriate Table in the answer booklet).(1.5 marks)

Term(force) label	Type of force (choose from Table 3)
A	III
В	IV
C	I

3.5.4 Rearrange equation (1) to make η_ℓ the subject of the equation. Call this equation (2). (1.2 marks)

$$\eta_{\ell} = \frac{2}{9v_o} r^2 g \left(\rho_s - \rho_{\ell} \right)$$

December 2-11, 2010

3.5.5 Given that v_o is the slope determined in question (1.5.2) and that $g = 9.8 \text{ ms}^{-2}$, $\rho_\ell = 900 \text{ kgm}^{-3}$, $\rho_s = 7800 \text{ kgm}^{-3}$, calculate η_ℓ for the castor oil.

(2.3 marks)

$$\eta_{\ell} = \frac{2 \times 9.8 \times (2.38 \times 10^{-3})^{2} \times (7800 - 900)}{9 \times 0.1466} = 0.5806 \text{ kgm}^{-1} s^{-1}$$

3.5.6 The factors in Table 4 may affect the value of the coefficient of viscosity measured at different locations on the earth's surface by this method. Tick (V) as appropriate

(1.0 mark)

Table 4

	True	False
Altitude	٧	
Latitude	V	
Relative humidity		٧
Ambient temperature	V	

December 2-11, 2010

3.5.7 Precautions which may be taken in order to obtain a precise result are given in Table 5. Tick (V) as appropriate (1.0 mark)

Table 5

State of the second state	True	False
Minimize parallax error	٧	
Avoid the balls touching the walls of the glass cylinder	٧	
Changing the starting point of timing to 50 cm		٧
Dropping the ball from a height above the liquid surface		٧

December 2-11, 2010

CHEMISTRY EXPERIMENT MARKING SCHEME

EXPERIMENT TWO

- 2.1 From the list given, choose two substances that constitute the bottom layer obtained in step 4 from the preparation of biodiesel (1mark)
 - (i) Potassium Hydroxide (KOH)
 - (ii) Water
 - (iii) PKO
 - (iv) Biodiesel.

Substance	Options	
One		
	КОН	
Two	PKO	

2.2. Calculate the percentage yield by mass of PKO-biodiesel from PKO based on your results.

(2.5 marks)

Volume of PKO bio-diesel = 24.0 cm³

Ranges of volumes for PKO-biodiesel:

$$17.02 \text{ cm}^3 - 26.70 \text{ cm}^3$$
 (0.5 mark)

Mass = Volume X density

For PKO-biodiesel, mass =
$$24.0 \text{ cm}^3 \text{ x } 0.89 \text{ g cm}^{-3} = 21.36 \text{ g } (0.5 \text{ mark})$$

For PKO, mass =
$$30 \text{ cm}^3 \times 0.912 \text{ g cm}^{-3} = 27.36 \text{ g}$$
 (0.5 mark)

% yield for PKO – biodiesel =
$$\frac{21.36 \, g}{27.36 \, g} \times \frac{100}{1} = 78.07\%$$
 (0.5 mark)

December 2-11, 2010

2.3. Why is anhydrous magnesium sulphate (MgSO₄) added in step 6 in the extraction of PKO-biodiesel? Select the correct option from the table below (0.5 mark)

Option	Reason
A	To improve the conductivity
В	To reduce the oil to hydrocarbons
С	To remove any remaining water
D	To increase the viscosity of the biodiesel

Option			
chosen	С	(0.5 mark)	

2.4. From equations 1 and 2 derive the expression for absolute viscosity η (1 mark)

Divide equation (1) by equation (2) to obtain

$$\frac{8lV\eta}{8klV} = \frac{\pi gh \rho r_0^4 \Delta t}{\pi gh r_0^4}$$
 (0.5 mark)

$$\frac{\eta}{k} = \rho \Delta t \qquad (0.25 \text{ mark})$$

Therefore
$$\eta = k\rho\Delta t$$
 (0.25 mark)

December 2-11, 2010

2.5. Record the titre value you obtained in the acid determination of PKO (1.5 marks)

Titration Run		
Initial Reading (cm ³)		
Final Reading (cm ³)		
Titre (cm ³)		

Final titre:

$$21.70 \text{ cm}^3 - 29.30 \text{ cm}^3$$

(1.5 marks)

$$19.10 \text{ cm}^3 - 31.90 \text{ cm}^3$$

(1 mark)

Value outside the above ranges

(0.5 mark)

2.6. Using the formula Acid value = $(V \times C \times Z)/m$, calculate the acid value.

Where V= volume in dm³ / 1 of 0.01 mol dm⁻³ (mol l⁻¹) Potassium Hydroxide (KOH) solution consumed (titre value)

c = concentration of Potassium hydroxide (KOH) solution

m = mass (g) of PKO sample

$$Z = 56.1 \text{ g/mol}$$

(1.0mark)

$$Acid\ value = \frac{V\ x\ c\ xZ}{m}$$

m = density x volume = 0.912 g cm⁻³ x 2 cm³ = 1.814 g

For titre = 21.70 cm^3

December 2-11, 2010

Acid value =
$$\frac{21.70 \, cm^3 \, x \, 0.01 \, mol \, cm^3 \, x \, 56.1 \, g \, mol^{-1}}{1.814 \, g} = 6.73$$

For titre = 29.30 cm^3

Acid value =
$$\frac{29.30 \, cm^3 \, x \, 0.01 \, mol \, cm^3 \, x \, 56.1 \, g \, mol^{-1}}{1.814 \, g} = 9.08$$

Therefore for acid value ranging between 6.73 - 9.08

(1 mark)

For titre = 19.10 cm^3

Acid value =
$$\frac{19.10 \, cm^3 \, x \, 0.01 \, mol \, cm^3 \, x \, 56.1 \, g \, mol^{-1}}{1.814 \, g} = 5.92$$

For titre = 31.90 cm^3

Acid value =
$$\frac{31.90 \, cm^3 \, x \, 0.01 \, mol \, cm^3 \, x \, 56.1 \, g \, mol^{-1}}{1.814 \, g} = 9..89$$

Therefore for acid value ranging between 5.92 - 9.89

(0.5 mark)

2.7. Calculate the acid concentration in mol dm⁻³ of PKO. (K = 39.1, O = 16.0, H = 1.0). (*Imark*)

Assume 1:1 mole ratio,

$$\frac{M_{KOH}V_{KOH}}{n_{KOH}} = \frac{M_{PKO}V_{PKO}}{n_{PKO}}$$
 (0.5 mark)

$$\frac{0.01 \times 25.5}{1} = \frac{M_{PKO} \times 2}{1}$$

$$M_{PKO} = \frac{0.255}{2} = 0.127 \approx 0.13 \, mol \, dm^3$$
 (0.5 mark)

One mark for calculation working even if the measurement is incorrect

Also based on correct approach but incorrect titre win the marks

December 2-11, 2010

2.8.	Record the titre value you obtained in the acid determination of PKO-biodiesel	(1.5)
	marks)	

Titration Run	
Initial Reading	
(cm ³)	
Final Reading	
(cm ³)	
Titre (cm ³)	

Final titre:

$$2.60 \text{ cm}^3 - 3.60 \text{ cm}^3$$

(1.5 marks)

$$2.30 \text{ cm}^3 - 3.90 \text{ cm}^3$$

(1 mark)

Value outside the above ranges

(0.5 mark)

Using the formula Acid value = $(V \times C \times Z)/m$, calculate the Acid value of PKO-biodiesel.

Where V= volume in dm³ / 1 of 0.01 mol dm⁻³ (mol l⁻¹) Potassium Hydroxide (KOH) solution consumed (titre value)

c = concentration of Potassium hydroxide (KOH) solution

m = mass (g) of PKO-biodiesel sample

Z = 56.1 g/mol

Ensure you use the appropriate units and assume 1 cm³ of PKO-biodiesel weighs 0.89 g (1mark)

December 2-11, 2010

$$Acid\ value = \frac{V\ x\ c\ xZ}{m}$$

$$m = density x volume = 0.89 g cm^{-3} x 2 cm^{3} = 1.78 g$$

For titre = 2.60 cm^3

Acid value =
$$\frac{2.60 \, cm^3 \, x \, 0.01 \, mol \, cm^3 \, x \, 56.1 \, g \, mol^{-1}}{1.78 \, g} \, = \, 0.83$$

For titre = 3.60 cm^3

Acid value =
$$\frac{3.60 \, cm^3 \, x \, 0.01 mol \, cm^3 \, x \, 56.1 \, g \, mol^{-1}}{1.78 \, g} = 1.19$$

Therefore for acid value ranging between 0.83 - 1.19

(1 mark)

For titre = 2.30 cm^3

Acid value =
$$\frac{2.30 \, cm^3 \, x \, 0.01 mol \, cm^3 \, x \, 56.1 \, g \, mol^{-1}}{1.78 \, g} \, = \, 0.74$$

For titre = 3.90 cm^3

Acid value =
$$\frac{3.90 \, cm^3 \, x \, 0.01 mol \, cm^3 \, x \, 56.1 \, g \, mol^{-1}}{1.78 \, g} \, = \, 1.25$$

Therefore for acid value ranging between 074 – 1.25

(0.5 mark)

One mark for calculation working even if the measurement is incorrect

December 2-11, 2010

2.10. Calculate the acid concentration in mol dm^{-3} of the PKO-Biodiesel. (K = 39.1, O = 16.0, H = 1.0) (1 mark)

Assume 1:1 mole ratio,

$$\frac{M_{KOH}V_{KOH}}{n_{KOH}} = \frac{M_{BD}V_{BD}}{n_{BD}}$$
 (0.5 mark)

$$\frac{0.01 \times 3.1}{1} = \frac{M_{BD} \times 2}{1}$$

$$M_{BD} = \frac{0.031}{2} = 0.0155 \approx 0.016 \, mol \, dm^3$$
 (0.5 mark)

- 2.11. Provide the correct option from A-D for the differences in the observed acidity of PKO and PKO-biodiesel (0.5 mark)
 - A. Method of preparation of PKO- Biodiesel makes it more volatile
 - B. Magnesium sulphate was used in the extraction of PKO-Biodiesel
 - C. In the extraction PKO-biodiesel it was mixed with potassium hydroxide (KOH) which neutralized the acidity
 - D. The extraction process increases the yield of PKO-Biodiesel

Option selected	A	(0.5 mark)	
		,	

- 2.12. Select the best option in the list below for the reason that Biodiesel releases less pollutants into the atmosphere than petro-diesel when combusted.
 - A. It contains more oxygen
 - B. Biodiesel contains less sulphur.
 - C. It contains more carbon atoms
 - D. It is highly dense

(0.5 mark)

Option selected	В	(0.5 mark)

December 2-11, 2010

BIOLOGY EXPERIMENTAL EXAMINTATION MARKING SCHEME

Table 2: Glucose concentration and time taken to decolourise

Conical flask number	G1	G2	G3	G4
Glucose Concentration (%)	2.0	6.0	10.0	12.0
Time (mins)	11.0 - 16.0 0.5 mark	10.0 – 13.0 0.5 mark	8.0 – 11.0 0.5 mark	7.0 – 10.0 0.5 mark

(2.0 marks)

1.1 Standard curve (Use the graph sheet provided) (2.0 marks)

Table 3: Time taken decolourise test solutions (2.0 marks)

Conical flask	A	В
Time (mins)	1.5 – 3.0	1.0 - 2.0
	1.0 mark	1.0 mark

December 2-11, 2010

1.2. Concentration of glucose in samples A and B estimated from the standard curve.

Samples	A	В
Concentration of	19.5%	20.5 %
glucose (%)	(1.0 mark)	(1.0 mark)

(Any correct determination from correct standard curve will score)

- 1.3. Sample with highest concentration of glucose......B.......... (1.0 mark)
- 1.4. Glucose is a reducing agent because, (tick appropriate boxes below)

Option	Reason	True	False
i	Oxidation number of Mn is decreased	X (0.5 mark)	
ii	Oxidation number of Mn in MnO ₄ became +4		X (0.5 mark)

1.5.	During the process of photosynthesis green plants useC gas to synthesise					
	glucose. This process occurs in light in the organelle calledF					
	An inorganic substance,D, is also a reactant in the process.					
	The glucose that is manufactured is stored mainly asN in the plants.					
	The glucose in the fruits plays a role in the dispersal of the seeds. Animals are					
	attracted by theQ of the fruit and they eat it. The seeds have a hardB					
	which prevents the seed from beingJ by theG in the alimentary					
	canal of the animals.					
	Later the animalP the seeds, usually away from the parent plant. This					
	helps reduceM between the parent plant and its offspring.					
	(Any correct answer $x = 0.2 \text{ mark}$) = 2 marks					

7TH INTERNATIONAL JUNIOR SCIENCE OLYMPIADAbuja, Nigeria December 2-11, 2010

1.7. Reason for answer to 1.6 above (1.0 mark)

Options	Reason	True	False
i	JA does not produce insulin	X	
ii	Fruit C has more water content than fruit D		X
iii	Fruit C has more glucose	X	
iv	JA does not produce glucagon		X

1.6. Fruit recommended for JauroAmadu's consumption Sample D (1.0 mark)

Any correct answer x 0.25 mark = 1.0 mark

Maximum marks = 14