

INTERNATIONAL JUNIOR SCIENCE OLYMPIAD

IJSO Brasil 2013 – Fase Final 24 de agosto de 2013

Nome			
Escola			
Série	Data de nascimento	RG	Código IJSO
			S

CADERNO

1

INSTRUÇÕES – LEIA ANTES DE COMEÇAR A PROVA

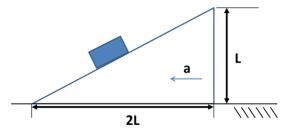
1. Sobre a prova:

- a. A prova é composta por 30 questões objetivas e 12 questões dissertativas, igualmente distribuídas entre Física, Química e Biologia;
- b. Confira os seus cadernos. O caderno 1 deve ter 14 páginas e o caderno 2, 14 páginas. Se o material estiver incompleto ou apresentar problemas de impressão, peça imediatamente um novo caderno ao fiscal;
- c. A compreensão das questões faz parte da prova. O fiscal não poderá ajudá-lo;
- d. Lembre-se de colocar o seu Código IJSO nos campos adequados do Caderno 2;

2. Sobre o tempo de duração:

- a. A prova tem duração de três horas e trinta minutos;
- b. O tempo mínimo de permanência na prova é de duas horas;
- c. Terminada a prova, entregue ao fiscal apenas o Caderno 2;
- 3. Sobre os critérios de correção e pontuação:
 - a. As questões dissertativas podem ser resolvidas a lápis, mas a **resposta final deve estar a caneta**. O Quadro de Respostas dos testes deve ser preenchido a caneta;
 - b. Se precisar modificar o caderno de resposta, comunique imediatamente o fiscal;
 - c. O critério de correção da parte teste é:

i. Resposta correta +1,00 ponto
 ii. Resposta incorreta -0,25 ponto
 iii. Sem resposta 0,00 ponto


- d. Serão classificadas para correção das questões dissertativas as provas dos estudantes com as maiores notas na parte teste;
- e. O valor de cada questão dissertativa é indicado no início do enunciado, totalizando 10,0 pontos por disciplina;
- f. A pontuação máxima é 30,0 (testes) + 30,0 (questões) = 60,0 pontos;
- g. O gabarito preliminar será disponibilizado ao término das atividades; serão considerados apenas os questionamentos **enviados para o e-mail fasefinal@ijso.com.br até 27/08 (terça-feira)**.
- 4. Sobre os dados para a resolução das questões, considere quando necessário:
 - a. Massas molares (em g/mol): H=1; C=12; N=14; O=16; Na=23; Mg=24; S=32; Cl=35,5; K=39; Fe=56; Zn=65; Br=80; I=127; Ba=137.
 - b. Aceleração da gravidade: $\|\vec{g}\| = 10 m/s^2$.
 - c. Constante de Faraday: 1 F = 96500 C.
 - d. Adote log $(2) \approx 0.30$.

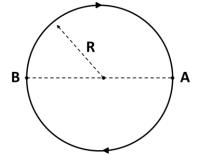
FÍSICA

Teste 01

O plano inclinado da figura tem altura L e o comprimento da base é 2L. Ele se desloca com aceleração horizontal de módulo a, transportando uma pequena caixa que permanece em repouso em relação ao plano inclinado. Despreze os atritos. Sendo g o módulo da aceleração da gravidade, pode-se afirmar que:

a.
$$a = g/2$$

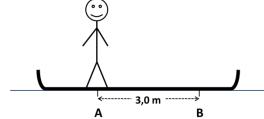
b. $a = g \cdot \sqrt{3}/2$
c. $a = g$
d. $a = g \cdot \sqrt{3}$
e. $a = 2g$



Teste 02

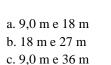
Uma partícula realiza um movimento circular uniforme, no sentido horário, com velocidade escalar 10 m/s e período 8,0 s. O raio da trajetória é de 2,0 m. Considere $\pi = 3$.

O módulo da velocidade vetorial média e o módulo da aceleração vetorial média entre as passagens da partícula pelos pontos A e B, diametralmente opostos são, respectivamente, iguais a:

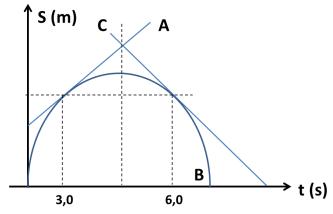

- a. 3,0 m/s e 10 m/s² b. 1,0 m/s e 1,0 m/s² c. 1,5 m/s e 2,0 m/s² d. 1,5 m/s e 50 m/s²
- e. 1.0 m/s e 5.0 m/s^2

Teste 03

Uma canoa encontra-se em repouso nas águas tranquilas de um lago. Uma pessoa encontra-se parada na canoa na posição A. Ela caminha 3,0 m, em relação à canoa, parando na posição B. Neste deslocamento considere que a pessoa dê passadas iguais em intervalos de tempo iguais e não considere os intervalos de tempo para o arranque e a parada. A massa da canoa e três vezes maior do que a da pessoa. Despreze os atritos. A distância que a canoa percorre, em relação às margens do lago é igual a:

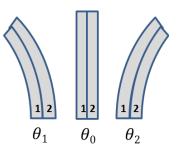

- a. 0,50 m
- b. 0,75 m
- c. 1,0 m
- d. 1,5 m
- e. 3,0 m

Três partículas, A, B e C descrevem a mesma trajetória retilínea. Seus espaços (s) em função do tempo (t) são dados conforme o gráfico ao lado.


Os segmentos de reta, que representam os movimentos de A e C, são tangentes ao arco de parábola que representa o movimento de B, respectivamente nos instantes 3,0s e 6,0s. A velocidade inicial da partícula B é de 9,0 m/s.

Os espaços das partículas A e C, no instante t=0 (espaços iniciais) são respectivamente iguais a:

d. 18 m e 45 m


e. 27 m e 36 m

Teste 05

O coeficiente de dilatação linear de alguns metais é dado na tabela abaixo:

Metal	Coeficiente de dilatação linear (°C ⁻¹)
Chumbo (Pb)	27.10 ⁻⁶
Zinco (Zn)	26.10 ⁻⁶
Alumínio (AI)	22.10 ⁻⁶
Prata (Ag)	19.10 ⁻⁶
Ouro (Au)	15.10 ⁻⁶

Com duas tiras desses metais, justapostas e bem aderidas, constrói-se uma lâmina bimetálica. Ela apresenta-se reta à temperatura θ_0 . Aquecendo-se a lâmina bimetálica ou resfriando-a, ela assume os aspectos indicados acima. Qual das alternativas apresenta uma possibilidade correta?

a. Lâmina1: prata; lâmina2: ouro; ($\theta_1 > \theta_0$) e ($\theta_2 < \theta_0$)

b. Lâmina1: prata; lâmina2: zinco; ($\,\theta_1>\theta_0\,)$ e ($\,\theta_2<\theta_0\,)\,$

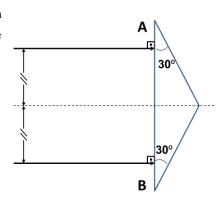
c. Lâmina1: ouro; lâmina2: chumbo; ($\theta_1 < \theta_0$) e ($\theta_2 > \theta_0$)

d. Lâmina1: prata; lâmina2:alumínio; ($\,\theta_1 < \theta_0\,)$ e ($\,\theta_2 > \theta_0\,)$

e. Lâmina1: zinco; lâmina2: alumínio; ($\theta_1 \! > \! \theta_0$) e ($\theta_2 \! < \! \theta_0$)

Teste 06

Dois raios de luz monocromática propagando-se no ar incidem na face AB de um prisma de índice de refração absoluto $\sqrt{3}$, conforme indica a figura. O índice de refração absoluto do ar é 1,0. Dados: $\sin 30^\circ = 1/2$; $\sin 60^\circ = \sqrt{3}/2$; $\sin 35^\circ = \sqrt{3}/3$ O ângulo formado pelos raios que emergem do prisma é igual a:


a. 30°

b. 45°

c. 60°

d. 75°

e. 90°

Código IJSO	Cader página	

Para uma corda homogênea, de seção reta constante, de massa m e comprimento L, define-se densidade linear (μ) a grandeza: μ =m/L. A velocidade de propagação (v) de um pulso transversal numa corda tensa depende da intensidade da

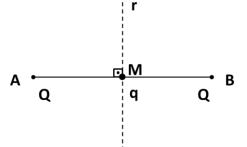
força de tração na corda (T) e da densidade linear (μ), sendo dada por: $v = \sqrt{T/\mu}$. Uma corda de aço é presa ao teto de uma sala e na outra extremidade fixa-se um bloco de massa M=10kg. A corda possui seção reta constante A= 5,0 mm² e a densidade volumétrica do aço é d = 7,8.10³ kg/m³. Seja g = 9,75 m/s² a aceleração local da gravidade. Percute-se a corda e um pulso transversal se propaga por ela.

A densidade linear da corda e a velocidade de propagação do pulso na corda são respectivamente iguais a:

- a. 78g/m e 100m/s
- b. 7,8 g/m e 50m/s
- c. 3,9 g/m e 100 m/s
- d. 39 g/m e 50m/s
- e. 39 g/m e 100 m/s

Duas partículas igualmente eletrizadas, cada uma com carga elétrica Q, são fixadas nos pontos A e B. Uma terceira partícula eletrizada com carga elétrica \mathbf{q} ao ser colocada no ponto \mathbf{M} médio do segmento AB, permanece em equilíbrio sob ação de forças eletrostáticas somente.

Desloca-se ligeiramente a partícula com carga ${\bf q}$ ao longo da mediatriz ${\bf r}$ do segmento AB. Observa-se que ${\bf q}$ volta a passar pelo ponto ${\bf M}$, isto é, seu equilíbrio é estável nesta direção. A respeito dos sinais de ${\bf Q}$ e ${\bf q}$ podemos afirmar que:



b.
$$Q < 0 e q < 0$$

c.
$$Q.q > 0$$

d.
$$Q.q < 0$$

e. Quaisquer que sejam os sinais de Q e de q o equilíbrio é sempre estável

Teste 09

Na aula de Eletrodinâmica o professor mostra como é um chuveiro elétrico por dentro e ao passar a chave seletora da posição "verão" para a posição "inverno", destaca aos alunos que parte do resistor do chuveiro é colocada em curtocircuito. O professor apresenta quatro afirmativas para que os alunos indiquem quais são as corretas, quando se realiza essa mudança de posição da chave seletora:

- I) A resistência elétrica do chuveiro aumenta;
- II) Corretamente ligado à rede elétrica a potência elétrica dissipada pelo chuveiro diminui.
- III) Corretamente ligado à rede elétrica a intensidade da corrente elétrica que percorre o chuveiro diminui.
- IV) Corretamente ligado à rede elétrica, mantida a vazão constante, a temperatura da água diminui.

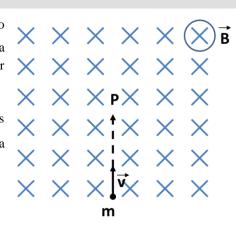
Caderno 1

Página 6

O que você responderia se fosse um aluno desta classe?

- a. Somente II) e IV) estão corretas.
- b. Somente II) está correta.
- c. Somente I) e IV) estão corretas
- d. Todas as afirmações estão corretas.
- e. Nenhuma das afirmações está correta.

Teste 10


Uma partícula de massa m e eletricamente neutra, penetra num campo magnético uniforme de intensidade B, com velocidade \vec{V} , conforme indica a figura. Considere a partícula sob ação exclusiva do campo magnético e por ser eletricamente neutra, não sofre desvio ao atravessar o campo.

Ao atingir o ponto P a partícula se desintegra em duas outras, A e C, de massas iguais a m/2. A partícula A adquire velocidade $^{2\vec{V}}$ (mesma direção e sentido da partúcla inicial) e carga elétrica +q (com q>0). Pode-se afirmar que:

- I) A carga elétrica da partícula C é igual a −q.
- II) A velocidade da partícula C é nula.
- III) A força magnética que age na partícula C é nula.
- IV) A partícula A passa a descrever uma trajetória circular no sentido anti-horário.

Tem-se:

- a. Todas as afirmativas são corretas;
- b. Somente I), II) e III) são corretas;
- c. Somente I) e II) são corretas;
- d. Somente I) é correta;
- e. Somente II) é correta

QUÍMICA

Teste 11

Sabe-se que a interação entre átomos que se ligam, na formação de novas substâncias, é feita através de seus elétrons mais externos. Uma combinação possível entre o elemento A com a configuração eletrônica 1s²2s²2p⁶3s²3p⁶4s¹ e outro B (Z=16) terá fórmula e ligação, respectivamente:

- a. AB e ligação covalente apolar.
- b. A₂B₃ e ligação covalente polar.
- c. A₂B e ligação iônica.
- d. AB₂ e ligação iônica.
- e. A₂B e ligação covalente polar.

Teste 12

Considere a equação química genérica não balanceada:

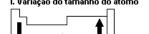
$$X_2 + Y_2 \rightarrow XY_3$$
.

Supondo Y_2 em excesso e considerando a massa molar das substâncias genéricas como $X_2 = 14$ g/mol, $Y_2 = 2$ g/mol e $XY_3 = 10$ g/mol, a massa (em gramas) de X_2 , consumida na obtenção de 140 g de XY_3 , é:

a. 14

b. 17

c. 21


d. 24

e. 98

Teste 13

Entre os diagramas a seguir, relacionados com a tabela periódica, quais estão corretos?

- a. II e V
- b. II e III
- c. I e V
- d. II e IV
- e. III e IV

IV. Variação da eletronegatividade

Teste 14

Dois frascos, contendo diferentes gases que não reagem entre si, são interligados através de uma válvula. Sabendo-se que:

- Não há variação de temperatura;
- A pressão inicial do gás A é o triplo da pressão inicial do gás B;
- O volume do frasco A é o dobro do frasco B, qual será a pressão do sistema (frasco A + B) quando a válvula for aberta?
- a. O dobro da pressão do frasco B
- b. 7/3 da pressão do frasco B
- c. 5/3 da pressão do frasco B
- d. 2/3 da pressão do frasco A
- e. 1/3 da pressão do frasco A

Considere as informações e na tabela a seguir. Um importante aspecto a ser considerado sobre a qualidade de um combustível é a quantidade de energia produzida na sua reação de combustão. A tabela a seguir apresenta o calor de combustão de algumas substâncias presentes em combustíveis que são comumente utilizados.

Com base nos dados da tabela, são feitas as seguintes afirmativas:

- I. O GNV é o combustível que apresenta o maior poder calorífico em kcal/grama de combustível.
- II. A combustão completa de 1 mol de butano produz 10 mols de água.
- III. O calor liberado na combustão completa de 1g de octano é de aproximadamente -15 kcal.
- IV. A combustão completa de 1 mol de GNV consome menos oxigênio do que a de 1 mol de butano.

Substância	Ocorrência	Calor de Combustão (kcal/mol)	
Metano (CH ₄)	Gás natural veicular (GNV)	212,8	
Butano (C ₄ H ₁₀)	Gás liquefeito de petróleo (GLP)	635,9	
Octano (1) (C ₈ H ₁₈)	Gasolina	1320,6	

Pela análise das afirmativas, conclui-se que somente estão corretas:

a. I e IV

b. I e II

c. II e III

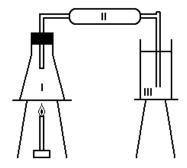
d. III e IV

e. II, III e IV

Teste 16

A figura representa o esquema de um experimento realizado em um laboratório de química para produção e posterior identificação de uma substância. No frasco I, foram adicionados $NH_4C\ell$ (s) e solução de NaOH (aq). O frasco II foi preenchido com uma substância secante, sílica-gel. No frasco III, foram adicionados água destilada e indicador ácido-base fenolftaleína. A identificação da substância é feita após mudança da coloração da solução contida no frasco III.

Com base no experimento, a substância identificada no frasco III foi:


a. H_2

 $b. O_2$

 $c. N_2$

d. NH₃

e. $C\ell_2$

Teste 17

O técnico de um laboratório de química preparou 1 L de solução de Ba(OH)₂ (solução A). Em seguida, o técnico transferiu 25 mL da solução A para um erlenmeyer e titulou-a com solução de HCl de concentração 0,1 mol/L, verificando que foram consumidos 100 mL dessa solução. O restante da solução foi deixado ao ar durante vários dias, formando um precipitado branco. Esse precipitado foi separado por filtração, obtendo-se uma solução límpida (solução B). O técnico transferiu 25 mL da solução B para um erlenmeyer e titulou-a com solução de HCl de concentração 0,1 mol/L, gastando 75 mL dessa solução. Admitindo-se que, durante a exposição do restante da solução A ao ar, não tenha ocorrido evaporação da água, considere as afirmativas a seguir.

- I. A concentração da solução A é 0,20 mol/L.
- II. A concentração da solução A é 0,40 mol/L.
- III. A concentração da solução B é 0,15 mol/L.
- IV. A concentração da solução B é 0,30 mol/L.
- V. O precipitado formado é BaCO₃.

Código IJSO

Caderno 1
página 9

Estão corretas apenas as afirmativas:

- a. I, III e V.
- b. I e IV.
- c. II e IV.
- d. I e III.
- e. II, IV e V.

Teste 18

Um átomo ²¹⁶₈₄M emite uma partícula alfa, transformando-se num elemento R, que, por sua vez, emite duas partículas beta, transformando-se num elemento T, que emite uma partícula alfa, transformando-se no elemento D.

Sendo assim, podemos afirmar que:

- a. M e R são isóbaros.
- b. M e T são isótonos.
- c. R e D são isótopos.
- d. M e D são isótopos.
- e. R e T são isótonos.

Teste 19

A chuva ácida tem grande impacto sobre o meio ambiente, afetando principalmente a biodiversidade do planeta. Um dos principais poluentes da chuva ácida é o ácido nítrico formado a partir do óxido nítrico (NO), que reage com o oxigênio do ar formando o NO₂. A equação de formação do HNO₃ é:

$$3 \text{ NO}_2(g) + \text{H}_2\text{O}(\ell) \rightarrow 2 \text{ HNO}_3(aq) + \text{NO}(g)$$

$$\Delta H^0 = -138,18 \text{ kJ mol}^{-1}$$

Em relação ao equilíbrio da equação, analise as afirmativas:

- I O aumento da temperatura leva a um aumento da concentração de HNO₃.
- II O aumento da pressão sobre o sistema tem como efeito o aumento da concentração de HNO₃.
- III O aumento da concentração de NO₂ leva a um aumento da concentração de HNO₃.

Está(ão) correta(s):

a. apenas I.

b. apenas II.

c. apenas III.

d. apenas I e II.

e. apenas II e III.

Teste 20

Três frascos não rotulados contêm líquidos incolores que podem ser ou solução de Na_2CO_3 , ou solução de Na_2SO_4 , ou solução de $NaC\ell$. Para identificar os conteúdos dos frascos, um analista numerou-os como I, II e III e realizou os testes cujos resultados estão indicados a seguir.

Com esses resultados, o analista pôde concluir que os frascos I, II e III contêm, respectivamente,

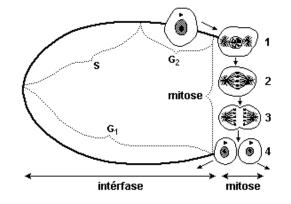
- a. NaC ℓ (aq), Na₂CO₃(aq) e Na₂SO₄(aq).
- b. Na₂SO₄(aq), NaCl(aq) e Na₂CO₃(aq).
- c. NaCl(aq), Na₂SO₄(aq) e Na₂CO₃(aq).
- d. $Na_2CO_3(aq)$, $NaC\ell(aq)$ e $Na_2SO_4(aq)$.
- e. $Na_2CO_3(aq)$, $Na_2SO_4(aq)$ e $NaC\ell(aq)$.

Solução testada Reagente adicionado	I	п	Ш
BaCl _{2(aq)} HCl _(aq)	ppt branco —		ppt branco efervescência

BIOLOGIA

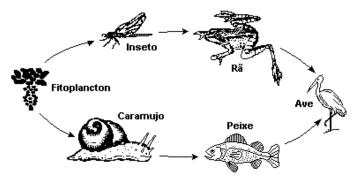
Teste 21

No 1°. Torneio "Inter-Reinos" de Futebol, organizado pela Federação Taxonômica Internacional, cinco equipes disputaram os jogos entre si. Um "jogador" se destacou como artilheiro, levando seu time a vencer o campeonato. Esse "jogador" pertencia a um time com as seguintes características: eucarioto, heterótrofo, uni ou pluricelular, reprodução assexuada ou sexuada, com capacidade de causar micoses e estabelecer interações mutualísticas. Pela descrição acima, podemos concluir que a equipe campeã e o artilheiro foram, respectivamente,


- a. MONERA Futebol Clube João RHIZOBIUM.
- b. Sport Clube FUNGI Zé BOLOR.
- c. PROTISTA Futebol e Regatas Mário AMEBA.
- d. Clube Atlético METÁFITA Leandro GOIABEIRA.
- e. METAZOA Atlético Clube Leonardo GAVIÃO.

Teste 22

Analise a figura a seguir.


Com base na figura e nos conhecimentos sobre os eventos da mitose, é correto afirmar:

- a. A fase 1 corresponde à Prófase, onde cada cromátide diminui de diâmetro.
- b. A fase 2 mostra cromossomos homólogos pareados em Metáfase.
- c. A fase 3 evidencia a atividade cinética dos microtúbulos.
- d. A fase 4 evidencia a ausência de citocinese em Telófase.
- e. A fase 4 evidencia a progressiva eliminação dos centríolos.

Teste 23

Observe a cadeia alimentar típica de lagoa, apresentada a seguir.

A ocorrência de poucos níveis tróficos deve-se ao fato de

- a. o fluxo decrescente e unidirecional de energia limitar o potencial biótico do sistema.
- b. a distribuição geográfica de animais ser condicionada à disponibilidade de território.
- c. a competição entre duas espécies conduzir à extinção ou à expulsão de uma delas.
- d. o produtor garantir o fornecimento contínuo de biomassa para um contingente grande de animais.
- e. a quantidade de indivíduos em cada nível trófico diminuírem à medida que servem de alimento ao nível seguinte.

As briófitas são plantas criptogâmicas avasculares que podem ser muito úteis para o homem. A formação de "tapetes" de muitas espécies promove a absorção e retenção de água e uma diminuição no impacto da gota da chuva. Várias espécies habitam as margens dos rios, absorvendo a água e retendo partículas do solo em suspensão. Existem espécies que têm a capacidade de concentrar metais pesados, como o mercúrio, outras, de reter poluentes do ar. No Japão, foi identificada uma espécie que se desenvolve apenas em água poluída. Existem espécies de briófitas que servem ainda de alimento para alguns mamíferos, pássaros e peixes, e que podem ser usadas para fins medicinais, entre outras finalidades.

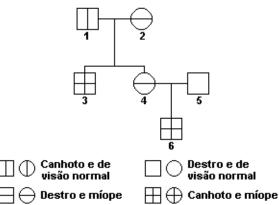
"Ciência Hoje", v.16, n.91 [adapt.]

Figura representativa de um musgo LOPES, S. *Biologia*. Volume único. São Paulo: Ed. Saraiva, 2004.

Com base nos textos e em seus conhecimentos, é correto afirmar que as Briófitas -

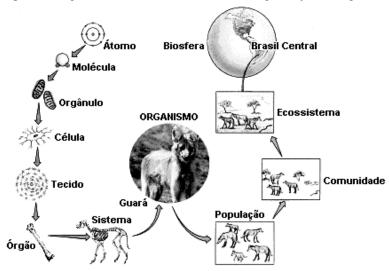
- a. vegetais que são parasitas somente quando as raízes se fixam nos hospedeiros arbustivo-arbóreos são úteis como indicadores ecológicos da poluição, no controle da erosão e do assoreamento de rios.
- b. vegetais que, em seu ciclo reprodutivo, formam o esporófito (n), após a fecundação da oosfera pelo anterozoide no gametófito (2n) são prejudiciais ao ecossistema, uma vez que levam à bioacumulação de metais pesados ao longo da cadeia alimentar.
- c. vegetais que apresentam rizoides para fixação no substrato e conduzem a água e os sais minerais através de vasos rudimentares - são úteis como indicadores ecológicos da poluição, sem ação, entretanto, no controle da erosão do solo e do assoreamento de rios.
- d. vegetais que, assim como as pteridófitas, apresentam estruturas produtoras de gametas bem visíveis são prejudiciais ao ecossistema, uma vez que levam a uma maior bioacumulação de metais pesados quanto menor for o nível trófico na cadeia alimentar.
- e. vegetais que não apresentam sistema vascular organizado em xilema e floema são úteis como indicadores ecológicos da poluição, no controle da erosão do solo e do assoreamento de rios.

Teste 25


O quadro a seguir refere-se aos envoltórios celulares e a algumas de suas especializações. Assinale a alternativa que associa corretamente a estrutura celular com suas características.

	Nome	Função	Presença em células vegetais	Presença em células animais
a)	Microvilosidades	Aderência entre as células	não	sim
b)	Glicocálix	Proteção da superfície celular contra lesões mecânicas e químicas	não	sim
c)	Mambrana plasmática	Controle de trocas entre a célula e o meio externo	não	sim
d)	Parede celular	Sustentação e manutenção da forma da célula	sim	sim
e)	Desmossomos	Aumento da superfície da membrana	sim	sim

Sabendo-se que a miopia e o uso da mão esquerda são condicionados por genes autossômicos recessivos, considere a genealogia a seguir.


Assinale a alternativa correta.

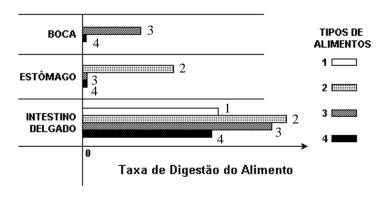
- a. O indivíduo 2 deve ser heterozigoto para os alelos dessas duas características.
- b. O indivíduo 3 deve ter herdado os alelos dessas duas características apenas de sua mãe.
- c. A probabilidade de o casal 1×2 ter uma criança destra e de visão normal é de 1/4.
- d. Todos os descendentes de pai míope e canhoto possuem essas características.
- e. A probabilidade de o casal 4×5 ter uma criança míope e canhota é de 3/8.

Teste 27

O esquema a seguir ilustra os diferentes níveis de organização biológica:

SILVA JÚNIOR, César; SASSON, Sesar. Biologia. São Paulo: Saraiva, 1998. p.17.

Tendo em vista os diferentes níveis de organização biológica, considere as seguintes proposições:


- I. Nos ecossistemas, encontram-se três tipos de organismos: produtores, consumidores e decompositores. O lobo guará exemplifica um decompositor, pois é um dos principais consumidores de carniça no Cerrado.
- II. A organela apresentada no esquema é a mitocôndria, onde ocorre a respiração. Uma importante etapa desse processo é a glicólise, fase em que a glicose é convertida em ácido pirúvico.
- III. Os ossos do lobo guará e de outros animais estão sujeitos a contínuas alterações bioquímicas e estruturais. Entre os fatores que interferem nessas alterações estão a nutrição e a ação hormonal.

Marque a alternativa CORRETA:

- a. Apenas a proposição I é verdadeira.
- b. Apenas a proposição II é verdadeira.
- c. Apenas a proposição III é verdadeira.
- d. Apenas as proposições II e III são verdadeiras.
- e. As proposições I, II e III são verdadeiras.

Durante o processo evolutivo, a anatomia e a fisiologia digestivas dos animais adaptaram-se, eficientemente, às suas características alimentares. No homem, o alimento é digerido sequencialmente nos diversos compartimentos do tubo digestivo até atingir condições ideais para absorção.

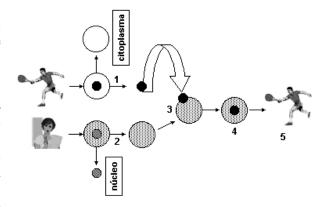
Observe adiante a indicação dos tipos de alimentos, enumerados de 1 a 4, em diferentes cores e o gráfico de barras que registra as taxas de digestão referentes aos tipos distintos de alimentos em cada compartimento digestivo do homem:

As características digestivas do principal carboidrato e da mais importante proteína do leite apresentam um perfil similar aos tipos de alimentos identificados, respectivamente, pelos números:

a. 1 e 2

b. 3 e 1

c. 3 e 2


d. 3 e 4

e. 4 e 1

Teste 29

O esquema a seguir mostra uma clonagem reprodutiva humana. Nesse processo, o núcleo de uma célula somática de um tenista é retirado, (1), é removido o núcleo de um ovócito, (2) e finalmente é introduzido o núcleo da célula do atleta no ovócito enucleado, (3). Essa nova célula, (4), é transferida para um útero para que se desenvolva e forme um embrião. O embrião se desenvolverá, e o adulto (5) terá praticamente as mesmas características fenotípicas do indivíduo que doou o núcleo, uma vez que o fenótipo é resultado do genótipo (DNA) mais as influências do ambiente.

Por muito tempo, o núcleo foi considerado uma organela que apresentava as seguintes estruturas: um envoltório, o material genético (DNA, RNA), o nucléolo e enzimas. Em 1997, porém, cientistas britânicos descobriram uma nova estrutura nuclear, que

foi denominada de retículo nucleoplasmático, sendo descrita como uma estrutura membranosa que está envolvida no processo de regulação de cálcio.

"Ciência Hoje", n⁰. 195 [adapt.]

Com base no texto e em seus conhecimentos, é INCORRETO afirmar que:

- a. o núcleo é uma organela exclusiva das células eucarióticas. No seu interior, estão presentes várias enzimas, entre elas as envolvidas nos processos de transcrição e replicação.
- b. o nucléolo é responsável pela síntese do RNA ribossômico; este juntamente com proteínas forma os ribossomos, estruturas importantes no processo de tradução.
- c. a função do retículo nucleoplasmático é semelhante à do retículo endoplasmático, que é uma organela citoplasmática.
- d. o envoltório nuclear é formado por duas membranas, sendo que cada uma delas é composta por duas camadas de lipídios com proteínas inseridas.
- e. todo o DNA da nova célula formada na clonagem citada no texto, (4), será a célula doadora do núcleo.

A tira de quadrinhos a seguir faz referência à manipulação de genes em laboratório.

Se esse tipo de experimento realmente fosse concretizado, poder-se-ia afirmar que

- a. o elefante e o vaga-lume são organismos transgênicos.
- b. apenas o vaga-lume é um organismo transgênico.
- c. uma sequência de RNA do vagalume foi transferida para células do elefante.
- d. o gene do vaga-lume controlou a produção de RNA e de proteína no interior das células do elefante.
- e. uma sequência de DNA do elefante sofreu mutação devido à introdução do gene do vaga-lume em células daquele mamífero.