

December 2(Wed) -11(Fri), 2015 | Daegu, Republic of Korea

Theoretical Competition

– Solution –

December 6, 2015

Theoretical Competition Time : 3 hr 30 min Points : 30 Page 1

I. Chemical Oxygen Demand (COD) Test

SOLUTION

I-1

I-1-1 [0.5 points]
(Answer) a + b/4 - c/2
(Explanation) Balance the masses of O for both sides.
c + 2x = 2a + 0.5b
x = a + 0.25b - 0.5c[0.3 points]
[0.2 points]

I-1-2. [0.5 points]
(Answer) 8y
(Explanation) Balance the charges for both sides.(-2)y + (+1)z = 2y(+3)
z = 8y[0.3 points]
[0.2 points]

I-1-3. [0.5 points] (Answer) 2a/3 + b/6 - c/3(Explanation)

$$C_a H_b O_c + y Cr_2 O_7^{2-} + z H^+ \rightarrow a CO_2 + \left(\frac{b+z}{2}\right) H_2 O + 2y Cr^{3+}$$

Balance the masses of O. c + 7y = 2a + 0.5b + 0.5z

[0.2 points]

Substitute 8 <i>y</i> for z	
3y = 2a + 0.5b - c	[0.2 points]
y = 2a/3 + b/6 - c/3	[0.1 points]

 I-1-4. [0.5 points]

 (Answer) 3y/2

 (Explanation)

 From the former questions,

 x = a + b/4 - c/2

 $y = 2a/3 + b/6 - c/3 = (2/3) \times (a + b/4 - c/2)$

 [0.1 points]

 Therefore, x = 3y/2

 [0.2 points]

Theoretical Competition

Time: 3 hr 30 min Points: 30

SOLUTION

Page 2

I-2

I-2-1. [1.0 point] (Answer) 6 (Explanation) (Method 1) Balance the charge sums on both sides.

-2 + 2j + 14 = +6 + 3j	[0.5 points]
f = 6	[0.5 points]

(Method 2) The electron flows for the redox pairs can be compared

N		1 1	
Oxidation)	$f Fe^{2+} \rightarrow f Fe^{3+} + fe^{-}$	number of electrons released: f	[0.2 points]
Reduction)	$Cr_2O_7^{2-}$ + $6e^- \rightarrow 2Cr^{3+}$	number of electrons consumed: 6	[0.3 points]
<u>f</u>	e 6	[0.5 points]	

I-2-2. [1.0 point] (Answer) 6.0×10^{-5} (Explanation)

The titration in the step (B) involves the redox reaction of Fe and Cr.

 $6Fe^{2+} + Cr_2O_7^{2-} \rightarrow 6Fe^{3+} + Cr^{3+}$ (unbalanced)

As the reduction of $Cr_2O_7^{2-}$ (Cr^{6+}) to $2Cr^{3+}$ has to be coupled by oxidation of $6Fe^{2+} \rightarrow 6Fe^{3+}$, titration of $Cr_2O_7^{2-}$ requires 6 equivalents of Fe²⁺. [0.2 points]

That is, at the beginning of step (B), the amount of $K_2Cr_2O_7$ was $(1.20 \times 10^{-3})/6 = 2.00 \times 10^{-4}$ mol. [0.5 points]

So, 6.0×10^{-5} (= 2.60×10^{-4} - 2.00×10^{-4}) mol of K₂Cr₂O₇ had been consumed for oxidizing pollutants. [0.3 points]

I-2-3. [1.0 point]

(Answer) 288 (Explanation) 6.0×10^{-5} mol of K₂Cr₂O₇ were required to treat 10.0 mL of waste water. Thus, 1.00 L of waste water should require 6.0×10^{-3} mol of K₂Cr₂O₇. [0.2 points] Equivalently this corresponds to 9.0×10^{-3} mol (=6.0 $\times 10^{-3}$ mol $\times 3/2$) [0.3 points] and 0.288 g $(9.0 \times 10^{-3} \text{ mol} \times 32) = 288 \text{ mg of } O_2 [0.3 \text{ points}].$ Then, the COD can be expressed as 288 ppm. [0.2 points]

Theoretical Competition Time : 3 hr 30 min Points : 30

SOLUTION

Page 3

I-2-4. [2.0 points]	
(Answer) 93.6, 0.176	
(Explanation)	
1 mole of C_6H_6 can be fully decomposed by 7.5 moles of O_2 .	
Or express chemical equation. $C_6H_6 + \frac{15}{2}O_2 \rightarrow 6CO_2 + 3H_2O_2$	[0.3 points]
So, 9.0×10^{-3} mol of O ₂ corresponds to 9.0×10^{-3} mol/7.5 = 1.2×10^{-3} mol	[0.3 points]
$C_6H_6: \frac{0.0012 \text{ mol} \times \left(\frac{78 \text{ g}}{1 \text{ mol}}\right) = 0.0936 \text{ g} = 93.6 \text{ mg}}{1000 \text{ g}}$	[0.4 points]
1 mole of C_6H_6 is decomposed to 6 moles of CO_2 .	[0.2 points]
Therefore in the present case, 7.2×10^{-3} moles (= 1.2×10^{-3} mol × 6) of CO	2 are evolved.
	[0.3 points]
CO ₂ volume is calculated as followed:	
PV = nRT	[0.2 points]
$V = \frac{(7.2 \times 10^{-3} \text{ mol})(0.0821 \text{ L} \cdot \text{atm/mol} \cdot \text{K})(298 \text{ K})}{1.00 \text{ atm}} = 0.176 \text{ L}$	[0.3 points]

I-2-5. [1.0 point]

(Answer) 1.2×10^{-4} , 5.2×10^{-4} (Explanation) Initially, there were 2.60×10^{-4} moles of $Cr_2O_7^{2-}$ but no Cr^{3+} in the test system. [0.1 points]

From the results of titration with Fe²⁺, we figure that 2.00×10^{-4} moles of Cr₂O₇²⁻ were present at the beginning of step (B), which means that 0.60×10^{-4} moles of Cr₂O₇²⁻ were used to decompose the pollutant and to produce the 1.20×10^{-4} (= $0.60 \times 10^{-4} \times 2$) moles of Cr³⁺ before the Fe²⁺ titration. [0.4 points]

In the step (B), 2.00×10^{-4} moles of $Cr_2O_7^{2-}$ were used and 4.00×10^{-4} (= $2.00 \times 10^{-4} \times 2$) moles of Cr^{3+} ions produced. [0.3 points]

Therefore the concentration of Cr^{3+} ions after Fe^{2+} titration is 5.20×10^{-4} (=4.00 × 10⁻⁴ +1.20 × 10⁻⁴) moles. [0.2 points]

	Amounts present	
	$Cr_2O_7^{2-}$	Cr ³⁺
Initial	$2.60 \times 10^{-4} \text{ mol}$	0
Change during step (A)	-0.60×10^{-4} mol	$+ 1.2 \times 10^{-4} \text{ mol}$
After step (A)/ Before step (B)	$2.00 \times 10^{-4} \text{ mol}$	$1.2 \times 10^{-4} \text{ mol}$
Change during step (B)	-2.00×10^{-4} mol	$+ 4.00 \times 10^{-4} \text{ mol}$
After step (B)	0	$5.2 \times 10^{-4} \text{ mol}$

12th International Junior Science Olympiad

Theoretical Competition

Time: 3 hr 30 min

Daegu, Republic of Korea December 6, 2015

SOLUTION

Page 4

Points : 30

I-3. [2.0 points]

(Answer) CH₃CHO, 18

(Explanation) Based on equation (1), oxidation of each pollutant requires following amount of O₂.

HCOOH +
$$\frac{1}{2}$$
O₂ → CO₂ + H₂O
CH₃OH + $\frac{3}{2}$ O₂ → CO₂ + 2H₂O
CH₃CHO + $\frac{5}{2}$ O₂ → 2CO₂ + 2H₂O

[0.3 points, each 0.1 points]

The COD of the pollutant solutions can be calculated stepwise,

		Moles of O ₂ per	COD for 10.0 mg/L
	Moles of O ₂ per	10.0 mg pollutant	pollutant solution
	1 mole pollutant	[0.6 points]	[0.9 points]
		= [each 0.2 point]	= [each 0.3 point]
НСООН	0.5	$0.5 \times (10.0 \times 10^{-3})/46$	$32 \times 10^3 \times 0.5 \times (10.0 \times 10^{-3})/46$
(46 g/mol)	0.5	$0.5 \times (10.0 \times 10^{-5})/46$	= 3.5 ppm
CH ₃ OH	1.5	$1.5 \dots (10.0 \dots 10^{-3})/22$	$32 \times 10^3 \times 1.5 \times (10.0 \times 10^{-3})/32$
(32 g/mol)	1.3	$1.3 \times (10.0 \times 10^{-5})/32$	<mark>= 15 ppm</mark>
CH ₃ CHO	2.5	$2.5 \times (10.0 \times 10^{-3})/44$	$32 \times 10^3 \times 2.5 \times (10.0 \times 10^{-3})/44$
(44 g/mol)	2.3	$2.3 \times (10.0 \times 10^{-5})/44$	<mark>= 18 ppm</mark>

Of the three samples, CH₃CHO solution has the highest COD [0.1 points], which is 18 ppm. [0.1 points]

In any case, student who make correct answer (CH3CHO and 18 ppm), will have full credits.

Theoretical Competition Time : 3 hr 30 min Points : 30 Page 5

SOLUTION

II. Ski Jumping

II-1 [0.75 points] [Correct answer: 0.25, wrong answer: 0 for each force]

(Answer) Gravitational force (5), Normal force (2), Air resistance (8)

II-2 [1.5 point]

(Answer) $\mu = \frac{2gh - v^2}{2gcos\theta \cdot s}$

(Explanation) By conservation of energy [1.0] or dynamitic & kinematic [0.5 + 0.5 or proportional rating for any other method]

$$mgh - \frac{1}{2}mv^{2} = \mu mg \cdot cos\theta \cdot s$$
$$\mu = \frac{gh - \frac{1}{2}v^{2}}{gcos\theta \cdot s} \qquad [0.5]$$

II-3 [1.5 point]

(Answer) $t = \frac{2v_0}{a}\kappa$

(Explanation) The horizontal distance to the landing point is $N_{\text{landing}} = v_0 t$. [0.5] The vertical distance to the landing point is $H_{\text{landing}} = \frac{1}{2}gt^2$. [0.5] Or proportional rating for any other method

From $|\kappa| = \frac{H}{N} = \frac{H_{\text{landing}}}{N_{\text{landing}}} = \frac{\frac{1}{2}gt^2}{v_0 t}$, we can find $t = \frac{2v_0}{g}\kappa$. [possible 0.25 for using ratio in slope + 0,25 rearranging the equation]

II-4 [1.25 point]

(Answer) $D = \frac{2v_0^2}{g}\kappa\sqrt{1+\kappa^2}$ [0.25 final answer] (Explanation) $D = \sqrt{N_{\text{landing}}^2 + H_{\text{landing}}^2} = N_{\text{landing}}\sqrt{1+\kappa^2} = \frac{2v_0^2}{g}\kappa\sqrt{1+\kappa^2}$ [0.5 + 0.5 for any method steps]

Theoretical Competition Time : 3 hr 30 min Points : 30 Page 6

III. Thomson's Cathode-Ray Experiment

SOLUTION

III-1 [1.0 point]

(Answer) $u = \sqrt{\frac{2eV_1}{m}}$

(Explanation) Potential energy of the electron at L_1 is eV_1 [0.25]. At the moment of electron passing through a slit of M1, kinetic energy of the electron at M_1 is $\frac{1}{2}mu^2$ [0.25], all of the potential energy converts to the kinetic energy [0.25].

$$eV_1 = \frac{1}{2}mu^2 \to u = \sqrt{\frac{2eV_1}{m}} \ [0.25]$$

III-2.

III-2-1. [1.0 point] (Correct answer: 1 point, wrong answer: 0 point)

(Answer) ①

(Explanation) The electric force exerts on the electron. Because the charge of the electron is negative, the electric force exerts to the M_2 direction. So the trace of the electron is ①.

III-2-2. [1.0 point] (Correct answer: 1 point, wrong answer: 0 point)

(Answer) ③

(Explanation) The magnetic force exerts on the electron. Because the negative electron moves to the right and the magnetic field points into the page, the magnetic force exerts to the L_2 direction. So the trace of the electron is ③.

III-3 [1.5 point]

(Answer) $u = \frac{V_2}{Bd}$

(Explanation) When the electron flies straight (trace ②), the electric force directed to M₂ and the magnetic force directed to L₂ are compensated with the same magnitude ($\sum F = 0$ or $F_E = F_B$ 0.5 point). Then, $\frac{eV_2}{d} = euB$. [0.5] The speed of the electron is $= \frac{V_2}{Bd}$. [0.5]

III-4 [0.5 point]

(Answer) $\frac{e}{m} = \frac{V_2^2}{2B^2 d^2 V_1}$ (Explanation) $u = \sqrt{\frac{2eV_1}{m}} = \frac{V_2}{Bd} \rightarrow \frac{e}{m} = \frac{V_2^2}{2B^2 d^2 V_1}$ (0.25 point for $u_{III-2} = u_{III-3}$)

(0.25 point for rearranging the formula)

Theoretical Competition Time : 3 hr 30 min Points : 30 Page 7

IV. Excretory System

SOLUTION

(Explanation) The blood arrives through the renal artery and leaves in the renal vein. The kidneys produce urine which is carried to the bladder along the ureter. There are three major anatomical demarcations in the kidney: the cortex, the medulla, and the renal pelvis. The cortex receives most of the blood flow, and is mostly concerned with reabsorbing filtered material.

X is protein. Y is glucose. Z is urea. Water is filtered from the glomerulus to the Bowman's capsule and re-absorbed, and discharged to form urine. Urea is the substance to be filtered, so is in both the plasma and the filtrate. Glucoses and amino acids are filtered, and 100%re-absorbed. Proteins are not filtered.

IV-1.[1.0 points]

(Answer)

()	
I-1	(1)

IV-2.[1.5 points]= 3 x 0.5 points

(Answer)

(X)	(Y)	(Z)
(0.0)g/100mL	(0.1)g/100mL	(0.0)g/100mL

unit (g/100mL)

constituent	Blood plasma	Primitive urine	urine
Water	92-93	92	95
Urea (Z)	0.03	0.03	2.00
Uric acid	0.004	0.004	0.05
Glucose (Y)	0.1	0.1	0
Amino acids	0.005	0.005	0
Minerals	0.9	0.9	0.9-3.6
Proteins (X)	8.0	0	0

IV-3.[1.5 points]= 3x 0.5 points

(Answer)

(X)	(Y)	(Z)
III	I, II Alternatives Only I or II: (0.25 points) Other: (0 point)	Π

Theoretical Competition Time: 3 hr 30 min Points: 30

SOLUTION

Page 8

V. Genetics

(Answer)

V-1	V-2	V-3
6	1/8	5'TAAGGTCA3'

(Explanation)

V-1.[1.0 point] The answer is autosomal recessive. Because the individual 4 is an affected male, his genotype should be homo-recessive (aa). Thus, his offspring has to have at least one recessive allele. That is, although individuals 7 and 8 are both phenotypically normal, they have a mutant allele, respectively.

V-2. [1.0 point]Since individuals 1 and 2 already have an affected child, they must be heterozygotes. Aa x Aa \rightarrow AA, Aa, Aa, aa. Therefore, the probability that anew born female will be affected is $1/8 (1/4 \times 1/2)$.

(1 point) for the correct answer

(1 point) for zero probability, if the answer to V-1 was 2

(0 point) for other options

V-3. [1.0 point]The nucleotide 'C' in[5'----TACGGTCA----3'] from the wild type has been replaced to 'A'in the mutant allele, making [5'----TAAGGTCA----3'].

Theoretical Competition

Time : 3 hr 30 min Points : 30 **Page 9**

SOLUTION

VI. Blood Circulation

VI-1.[1.0 point]= 4 x 0.25 points

(Answer)

	Semilunar valves	Atrioventricular valves
t_1	Opened (O)	Closed(×)
t_2 ,	Closed (×)	Opened(°)

(Explanation)Atrioventricular valves (AV valves) are thin flaps of tissue between the atria and ventricles. Semilunar valves lie at the openings from the ventricles into the arteries and prevent blood pumped out of the heart from returning to it. At t_1 of ventricle contraction, AV valves are closed while semilunar valves are opened. At t_2 of ventricle relaxation, semilunar valves are closed while AV valves are opened to fill ventricle out with blood.

VI-2.[1.0 point]

(Answer)

Heart rate	(75)) beats/min
------------	------	-------------

(Explanation)Heart rate is beating number of heart per unit time (min). Referring to the graph, the second heartbeat comes in 0.8 sec after the first heartbeat.

: Heart rate = $\frac{1 \text{ beat}}{0.8 \text{ sec}}$ X $\frac{60 \text{ sec}}{1 \text{ min}}$ = 75 beats/min

(1 points) for the correct answer

(0.5 points) for the correct calculation, if the answer is not correct

VI-3.[1.0 point]

(Answer)

(Explanation)Cardiac output is defined as the volume of blood pumped per ventricle per unit time.

It can be calculated by multiplying heart rate (beats per min) by stroke volume (mL/beat) Cardiac output = heart rate X stroke volume

Stroke volume = Volume of blood before contraction - Volume of blood after contraction By graph, stroke volume = 135 mL - 65 mL = 70 mL

:. Cardiac output = 75 beats/min x 70 mL/beat = 5250 mL/min (5.25 L/min)

(1 points) for the correct answer, according to the answer of the question VI.2

(0.5 points) for the correct calculation, if the answer is not correct